

		УТВЕРЖДАЮ» Директор «НПП «ПРОМА»
		И.В.Телешев
<u>~_</u>	»	2017 г.

ФОТОДАТЧИКИ СИГНАЛИЗИРУЮЩИЕ ФДС-103A1 - Exd

Руководство по эксплуатации В407.127.501.000 РЭ Настоящее руководство по эксплуатации распространяется на фотодатчик контроля пламени ФДС-103A1- Exd (в дальнейшем – фотодатчик) и содержит сведения об устройстве, принципе действия, а также указания, необходимые для правильной эксплуатации и полного использования технических возможностей данных устройств.

Фотодатчик предусматривает обслуживание инженером КИПиА, имеющим высшее техническое профильное образование.

Обслуживание периодическое одним человеком.

1. ОПИСАНИЕ И РАБОТА ИЗДЕЛИЯ

1.1. Назначение изделия

1.1.1. Устройства предназначены для контроля наличия основного пламени горелки в топках котлоагрегатов, печей, технологических установок и выдачи сигналов в схемы контроля и противоаварийной защиты установок.

Устройства могут быть использованы в составе действующих и проектируемых систем защиты котельной автоматики в составе запально-защитных устройств ГОСТ Р 52229-2004 и горелок ГОСТ 21204-97, в том числе для применения во взрывоопасных производствах (исполнение Exd «Взрывонепроницаемая оболочка») в теплоэнергетике.

Устройства могут быть использованы в составе действующих и проектируемых систем защиты котельной автоматики в составе запально-защитных устройств ГОСТ Р 52229-2004 и горелок ГОСТ 21204-97.

Оптическая спектральная характеристика фотоприемника фотодатчика оптимизирована для селективного контроля пламени газовой горелки. При контроле пламени жидкотопливной или газо-мазутной горелки одну из уставок настраивать на газовое пламя, вторую уставку на пламя жидкого топлива.

Фотодатчики относятся к ремонтируемым многофункциональным одноканальным изделиям.

Фотодатчики классифицированы в соответствии с ГОСТ Р 52931-2008 следующим способом:

по метрологическим свойствам устройства не являются средством измерения;

климатическое исполнение - УХЛ 1 по ГОСТ 15150-69 для температурного диапазона от минус 60 $^{\circ}$ С до + 60 $^{\circ}$ С.

Фотодатчики имеют уровень взрывозащиты « d » с видом взрывозащиты «Взрывонепроницаемя оболочка» и маркировку по взрывозащите «1Ex d IIB+H₂ T5 Gb» и соответствуют требованиям ГОСТ 31610.0-2014, ГОСТ IEC 60079-1-2011, предназначены для установки во взрывоопасных зонах помещений и наружных установок согласно гл.7.3 « Правил эксплуатации электроустановок» (ПУЭ) и другим нормативным документам, регламентирующим применение электрооборудования во взрывоопасных зонах.

Условия применения во взрывоопасных зонах классов 1 и 2, категории IIA и IIB, IIB $+H_2$, группы T1...T5 в соответствии с присвоенной маркировкой взрывозащиты «1Ex d IIB+H $_2$ T5 Gb» по ГОСТ 31610.0-2014, ГОСТ IEC 60079-1-2011 и руководством по эксплуатации B407.127.000.501 PЭ.

Условные обозначения:

Фотодатчик контроля пламени сигнализирующий ФДС-103XY-Exd-К ТУ 28.21.14-007-87875767-2017,

- ФДС- фотодатчик сигнализируюший;
- 103 модельный ряд;
- X принимаемый тип оптического излучения:
 - А полный поток излучения пламени;
 - В пульсации (переменная составляющая) излучения пламени;
- Y принимаемый оптический спектр излучения (длина волны):
 - 1 (270-380) HM;
 - 2 (230-285) HM;
 - 3 (185-260) HM;
 - 4 (900-1700) HM;
 - 5 (320-1100) HM;
 - 6 (1200-2550) HM;
- Exd «Взрывонепроницаемая оболочка».
- К тип кабельного ввода в оболочку (согласно заказа):
 - КН под небронированный кабель с диаметром оболочки (6-12) мм;
 - КБ под бронированный кабель с диаметром оболочки (6-12) мм
 - KT трубный ввод кабеля, резьба внутренняя $\frac{1}{2}$ " ISO228.

Примеры записи устройства при заказе и в документации другой продукции, в которой он может быть применен:

- а) Фотодатчик сигнализирующий ФДС-103A1-Exd-КБ ТУ 28.21.14-007-87875767-2017;
- б) Фотодатчик сигнализирующий ФДС-103A2-Exd-КН ТУ 28.21.14-007-87875767-2017;
- в) Фотодатчик сигнализирующий ФДС-103B4-Exd-КТ ТУ 28.21.14-007-87875767-2017;
- г) Фотодатчик сигнализирующий ФДС-103B6-Exd-КБ ТУ 28.21.14-007-87875767-2017.

2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ФДС-103A1- Exd

2.1. Входной сигнал:

Полный поток ультрафиолетового излучения (длины волн в пределах 280 - 400 нм). 2.2. Выходной сигнал:

2.2.1. Тип выхода

состояние переключающих, изолированных контактов реле.

Допустимая нагрузка на контакты реле: напряжение не более 30 В, ток (0,01-2) А; токовый аналоговый сигнал (4-20)мА.

2.2.2. Время срабатывания

(настраивается в меню от 0 до 5 с):

- при появлении пламени

1 c; 2 c.

- при погасании пламени 2.2.4. Питание фотодатчика

Напряжение постоянного тока

от 24B ± 2,4В.

2.2.5. Максимальный потребляемый ток:

0,5 A.

2.2.6. Сигнализация о наличии контролируемого пламени горелки:

индикатор светодиодный и цифровой, 2 группы переключающихся контактов реле.

- 2.2.7. Сопротивление изоляции при нормальных условиях эксплуатации, не менее 20 МОм, контрольное напряжение 1500 В.
 - 2.2.8. Климатическое исполнение УХЛ1 по ГОСТ 15150-69.
 - 2.2.9. Температура окружающего воздуха от минус 60°C до плюс 60°C.
 - 2.2.10. Степень защиты IP65 по ГОСТ 14254-96.
 - 2.2.11. Требования надежности.
- Вероятность безотказной работы устройства должна быть не менее 0,92 за 2000 час. работы.
 - Полный средний срок службы 12 лет.
 - 2.2.12. Габаритные размеры: ширина х высота х глубина 166х180х104 мм.
 - 2.2.13. Масса фотодатчика, не более

2 кг.

3. КОМПЛЕКТНОСТЬ

3.1. Комплект поставки фотодатчика должен соответствовать указанному в таблице 1.

Таблица 1

Обозначение документа	Наименование и обозначение	Кол.	Примечание
B407.127.501.000	ФДС-103A1-Exd	1 шт.	
В407.127.501.000 ПС	Паспорт	1 экз.	
В407.127.501.000 РЭ	Руководство по эксплуатации	1 экз.	
B407.127.555.000	Монтажный узел СЕ-07-05-Р		По контракту, Р-противодавление
B407.127.565.000	Монтажный узел СЕ-07-05-Р		в топке до 500 кПа,
B407.127.550.000	Монтажный узел СЕ-07-05	1 шт.	остальные до 10 кПа
B407.127.560.000	Монтажный узел СЕ-07-06		

4. УСТРОЙСТВО И РАБОТА ФОТОДАТЧИКА

4.1. Принцип работы

Принцип работы фотодатчика заключается в преобразовании интегрального потока ультрафиолетового излучения пламени горелки и выдачи сигнала наличия/отсутствия пламени основной горелки в схему защиты котла.

По включению питания фотодатчик переходит в рабочий режим, в котором на цифровом семисегментном индикаторе непрерывно отображаются текущая интенсивность пламени контролируемой горелки, вычисляемая как процент текущего сигнала с фотоприемника, вычисленный от значений минимального и максимального сигнала. При этом минимальный сигнал (нулевой уровень) устанавливается в настройках фотодатчика, а максимальный равен 4095 (максимальное значение кода 12 - разрядного АЦП).

В настройках прибора вводятся две уставки на погасание факела (достижение предупреждающего порога). По умолчанию обе уставки равны 40%.

Релейные выходы RL1 и RL2 по умолчанию срабатывают на размыкание контактов, т.е. если интенсивность горения опускается ниже уставки, то реле размыкаются. Посредством настроек фотодатчика имеется возможность перенастроить уставки и состояние релейных выходов. При этом учитываются гистерезис и задержки срабатывания реле, которые определяются в настройках фотодатчика.

Светодиод «Факел» индицирует наличие пламени горелки.

Релейный выход «Отказ» срабатывает на замыкание контактов в случае возникновения, какого либо отказа фотодатчика. В обесточенном состоянии контакты реле «Отказ» разомкнуты.

Фотодатчик имеет интерфейс RS-485 и поддерживает обмен информацией по протоколу MODBUS-RTU.

Имеется возможность непосредственно в рабочем режиме просмотреть значение уставки 1 (по нажатию кнопки ▼), уставки 2 (по нажатию кнопки ▲) и температуры внутри корпуса фотодатчика (по нажатию кнопки ✔).

Внутри корпуса фотодатчика предусмотрен подогрев, который включается при снижении температуры ниже уставки. Уставка включения подогрева выставляется в меню фотодатчика.

Перед началом работы необходимо настроить фотодатчик на пламя контролируемой горелки. Для этого необходимо выполнить две основные операции - фиксацию нулевого уровня и установку усиления сигнала фотоприемника посредством меню настроек. Необходимо подобрать усиление фотодатчика так, чтобы он распознавал пламя контролируемой горелки на всех режимах, начиная с минимального горения. Для входа в меню необходимо одновременно нажать и удерживать кнопки ✔ ▼.

В процессе работы возникающие отказы сопровождаются выводом соответствующего сообщения на индикатор и замыканием оптореле «Отказ».

- «Err0» неисправность фотодатчика (фотодатчик не прошел самоконтроль).
- 2) «Err1» температура внутри корпуса фотодатчика выше максимально допустимой.

4.2. Конструкция фотодатчика

Фотодатчик выполнен в металлическом корпусе.

На лицевой панели расположены кнопки управления, четырехразрядный цифровой индикатор и светодиодные индикаторы.

Кнопки предназначены для задания настроек фотодатчика:

- кнопка вверх.
- кнопка вниз.

- кнопка ввод.

Светодиоды:

«Сеть» - индикация подачи питания на фотодатчик;

«Факел» - индикация наличия пламени горелки.

Четырехразрядный цифровой индикатор для индикации уровня сигнала пламени горелки и работы с меню фотодатчика.

Конструкция фотодатчика представлена на рис.1.

Схема подключения внешних цепей представлена на рис.2.

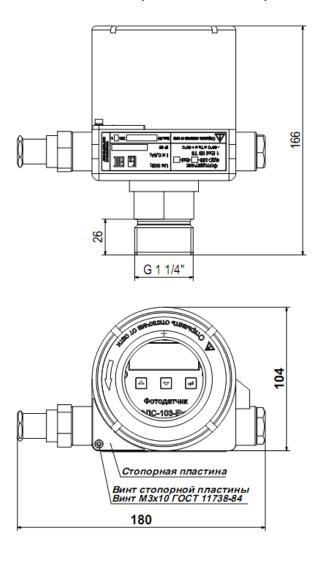


Рис.1. Конструкция фотодатчика ФДС-103A1-Exd.

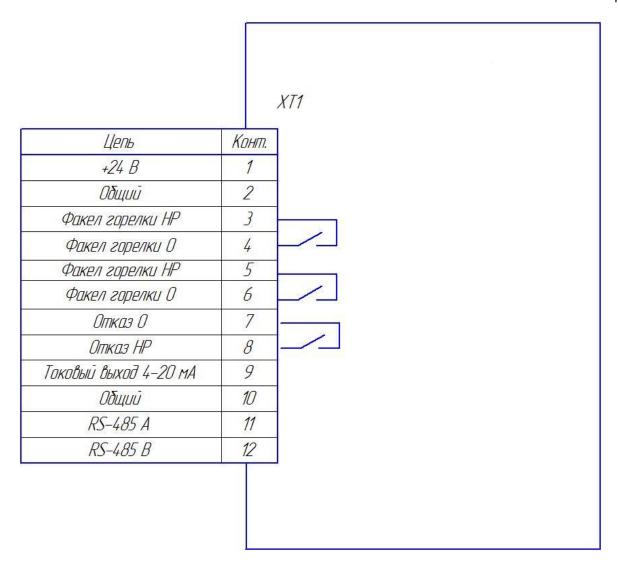


Рис.2. Схема подключения внешних цепей к фотодатчику ФДС-103A1-Exd.

5. СРЕДСТВА ИЗМЕРЕНИЯ, ИНСТРУМЕНТ И ПРИНАДЛЕЖНОСТИ

5.1. Средства измерения, инструмент и принадлежности должны соответствовать указанным в таблице 2.

Таблица 2

Наименование	Технические характери-	Назначение
и тип	СТИКИ	и операции
Цифровой прибор	Напряжение до 1000В	Контроль напряже-
B7-77	погрешность ± 0,07%	ния питания датчика
	-	220В,50Гц
Мегаомметр	Напряжение 500В, пре-	Контроль сопротив-
Ф4102/1	дел 100 МОм	ления изоляции

6. МАРКИРОВКА И УПАКОВКА

- 6.1. На прикрепленной к датчику табличке, изготовленной методом фото-химпечати, должны быть нанесены следующие знаки и надписи:
 - наименование и обозначение фотодатчика ФДС-103A1- Exd;
 - маркировка вида взрывозащиты «1Ex d IIB+H₂ T5 Gb».
 - порядковый номер и год выпуска по системе нумерации предприятия изготовителя.
 - параметры электропитания = 24 В;
 - выходной сигнал (4-20) мА;
 - обозначение степени защиты оболочки IP65;
 - климатическое исполнение УХЛ1;
 - температура окружающей среды минус 60 +60 °C.
- 6.3. Транспортная маркировка должна соответствовать ГОСТ 14192. На транспортной таре должны быть нанесены манипуляционные знаки «Осторожно, хрупкое», «Боится сырости», «Верх», «Не бросать, не кантовать».
- 6.4. Фотодатчики должны быть обернуты упаковочной бумагой в 2 слоя и упакованы вместе с паспортом в картонные коробки из гофрокартона.
 - 6.5. На боковую стенку коробки наносится этикетка по ГОСТ 2.601.

7. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 7.1. Источниками опасности при монтаже и эксплуатации фотодатчика являются электрический ток.
 - 7.2. Безопасность эксплуатации фотодатчика обеспечивается:
 - 1) изоляцией электрических цепей;
 - 2) надежным креплением фотодатчика при монтаже на объекте;
- 3) конструкцией, все токоведущие части расположены внутри корпуса, обеспечивающего защиту обслуживающего персонала от соприкосновения.
- 7.3. На корпусе расположен заземляющий зажим, отмеченный знаком заземления.
- 7.4. По способу защиты человека от поражения электрическим током приборы относятся к классу I по ГОСТ 12.2.007.0-75.
- 7.5. Устранение дефектов приборов и их замена производится при отключенном электрическом питании.
- 7.6. Эксплуатация приборов разрешается только при наличии инструкции по технике безопасности, утвержденной руководителем предприятия-потребителя.
- 7.7. Все работы по монтажу и демонтажу фотодатчика ФДС-103-Exd проводить при обесточенном питании шкафов розжига и пультов управления. Открытие крышки взрывонепроницаемой оболочки производить только после отключения питания пультов управления и шкафов розжига.
- 7.8. Настройку и проверку фотодатчика ФДС-103-Exd во взрывоопасной среде производить дистанционно только по интерфейсу RS-485 с персонального компьютера, используя преобразователь интерфейса USB-RS-485 с помощью программы FDS_Interfase1. Программа в свободном доступе на сайте: **WWW.PROMAV.RU**.

Открытие крышки взрывонепроницаемой оболочки во взрывоопасной среде запрещается!.

8.ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

- 8.1. Размещение и монтаж на объекте.
- 8.1.1. При выборе места установки фотодатчика необходимо соблюдать следующие условия:
- температура и относительная влажность окружающего воздуха должны соответствовать значениям, указанным в пп. 2.2.8. и 2.2.9.
- 8.1.2. Механическое крепление на объекте возможно на любой плоскости монтажным узлом с обдувом воздухом (рис.3, рис.4, рис.5 и рис.6).

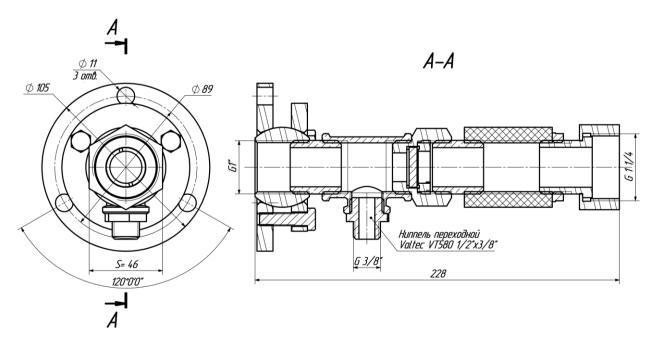


Рис.3. Монтажный узел СЕ-07-05-Р с юстировкой.

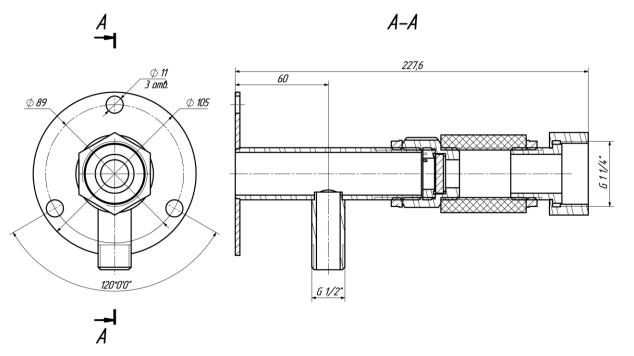


Рис.4. Монтажный узел СЕ-07-06-Р.

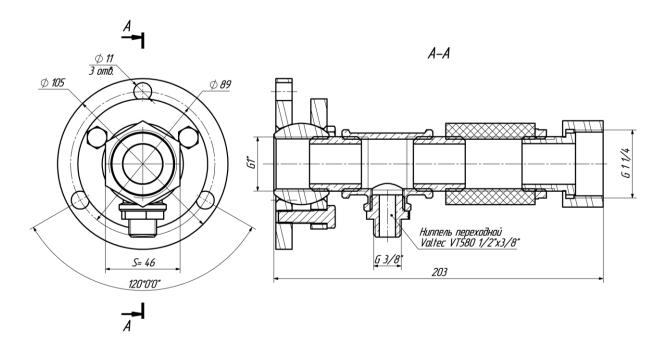


Рис.5. Монтажный узел СЕ-07-05 с юстировкой.

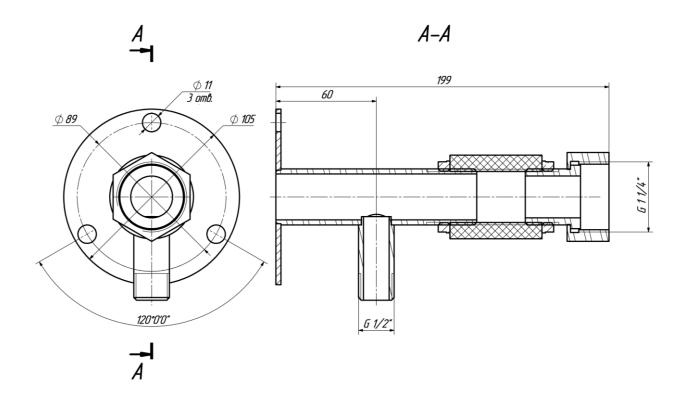


Рис.6. Монтажный узел СЕ-07-06.

8.1.3. Подключение фотодатчика производится в соответствии со схемой подключения внешних цепей рис.2. и проекта.

Подключение внешних цепей вести бронированным кабелем с диаметром наружной оболочки от 6 мм до 12 мм с многожильными медными проводами сечением (0,35-0,5) мм² для стандартного исполнения КБ с кабельным вводом под бронированный кабель. В проектах необходимо учитывать исполнение фотодатчика по типу кабельного ввода:

- К – тип кабельного ввода в оболочку (согласно заказа):

КН – под небронированный кабель;

КБ – под бронированный кабель;

КТ – трубный ввод кабеля – труба $\frac{1}{2}$ ".

Подключение внешних цепей вести кабелем с диаметром наружной оболочки от 6 мм до 12 мм с многожильными медными проводами сечением (0,35-0,5) мм² для исполнения КТ – в трубах

Для того, что бы подключить провода необходимо открутить верхнюю крышку фотодатчика вращая против часовой стрелки (рис.7) и снять переднюю панель, потянув ее вверх (Рис.8).

После подключения проводов к клеммной колодке, установить переднюю панель и закрутить верхнюю крышку фотодатчика, собрать и затянуть элементы кабельного ввода в соответствии с инструкцией завода-изготовителя.

Фотодатчик заземлить медным многожильным проводом с сечением не менее 1,5 мм² и изоляцией желто- зеленого цвета в соответствии с правилами заземления электрооборудования.

- 8.1.4. Устойчивая работа фотодатчика достигается при соблюдении следующих требований при установке:
- 1) ориентация фотодатчика в зону начала горения приблизительно от 1/5 до 1/2 видимой части пламени;
- 2) между пламенем и фотодатчиком не должно быть препятствий, (стекла только кварцевые!) пламя постоянно должно находиться в «поле зрения» фотодатчика.

Рис. 7. Фотодатчик ФДС-103-Exd. Общий вид.

a)

б)

Рис. 8 Фотодатчик ФДС-103-Exd со снятой верхней крышкой, установленной (а) и снятой (б) передней панелью.

8.1.5. До подключения фотодатчика в схему автоматики необходимо проверить техническое состояние фотодатчика по разделу 8.3 и работоспособность путем использования пламени ручного запальника (имитатора пламени).

При монтаже фотодатчиков на объекте (вводе в эксплуатацию) необходимо руководствоваться настоящим РЭ и паспортом на фотодатчик ФДС-103-Exd , гл. 7.3 ПУЭ, ГОСТ 31610.0-2014, ГОСТ IEC 60079-1-2011.

8.1.6. Воздух, подаваемый для охлаждения должен быть чистым, сухим и холодным. В нормальных условиях, при использовании чистого топлива и умеренном температурном режиме, достаточный расход воздуха составляет примерно 5 куб. м / час или (85 л/мин.). Если температура близка к верхнему рабочему пределу и/или используются грязные / пыльные виды топлива, может потребоваться увеличение обдува до 25 куб.м / час (420 л/мин).

Угол визирования устройства составляет (5-15)°. Для точной работы устройства необходимо придерживаться соотношения диаметра и длины визирной трубы, которое должно составлять не менее 1 : 20.

8.2. Использование изделия

8.1.7. Визирная труба.

8.2.1. Настройка фотодатчика

Перед началом работы необходимо произвести настройку фотодатчика. Все настройки производятся в меню фотодатчика в условиях лаборатории или отсутствии взрывоопасной среды. При наличии взрывоопасной среды все настройки проводятся дистанционно с персонального компьютера согласно п.8.2.2. с помощью программы FDS_Interfase1 по интерфейсу RS-485.

Для предотвращения несанкционированного доступа к меню настроек предусмотрен пароль. Если пароль был установлен пользователем, то после отпускания кнопок на индикаторе высвечивается PS__. С помощью кнопок ▲ и ▼необходимо ввести пароль (число от 0 до 99) и нажать кнопку ✔

Если пароль введен верно (или пароль не был установлен) попадаем в меню настроек. Выбор параметра меню кнопками ▲ и ▼. Вход в режим редактирования выбранного параметра кнопкой ✔ . Изменение значения выбранного параметра кнопками ▲ и ▼, возврат в меню настроек кнопкой ✔ . Для сохранения настроек параметров необходимо выбрать в меню настроек параметр «End» и удерживать кнопку ✔ в нажатом состоянии до выхода фотодатчика в рабочий режим (~1 сек). Для возврата в рабочий режим без сохранения настроек одновременно нажать и удерживать кнопки ▲ и ▼.

Перечень и значения программируемых параметров меню.

Nº	Параметр на	Назначение параметра	Возможные	Значение по
П.П.	дисплее (вы- бирается		значения (вы- бираются	умолчанию
	кнопками ↑и↓)		кнопками ↑и↓)	
1	SEt0	Фиксация нулевого уров- ня прибора	02000	-
2	USIL	Установка усиления сигнала фотоприемника	minmax	max
3	USt1	Уставка 1 – порог погаса- ния факела	0100	40
4	USt2	Уставка 2 – порог погасания факела (или предупреждающий порог)	0100	40
5	drL0	Задержка срабатывания релейных выходов на по- гасание факела в секун- дах	05	0
6	drL1	Задержка срабатывания релейных выходов на по- явление факела в секун- дах	05	0
7	SrEL	Установка состояния ре- лейных выходов	04	0
8	GISt	Установка гистерезиса срабатывания релейных выходов	05	0
9	USrd	Установка значения усреднения АЦП	06	4
10	SPEd	Установка значения быстродействия АЦП	18	2
11	Out	Установка типа токового выхода	01	0
12	I4	Настройка токового вы- хода на 4 mA	-	-
13	I_20	Настройка токового вы- хода на 20 mA	-	-
14	Adrr	Адрес прибора в сети MODBUS	0255	1
15	bAUd	Установка скорости при- ема/передачи UART	06	2
16	HI_t	Максимальная темпера- тура	090	70
17	LO_t	Температура включения подогрева, °C	-4040	+8
18	PS	Установка пароля на вход в меню настроек	099	0 – нет пароля
19	End	Сохранение настроек и выход	-	-

«SEt0» - фиксация нулевого уровня прибора. Производится при погашенной контролируемой горелке. После входа в этот режим на индикаторе высвечивается текущее значение уровня сигнала с фотоприемника (код АЦП в диапазоне 0...4095). Имеется ограничение на значение уровня сигнала для нулевого уровня. Если в момент нажатия кнопки

это значение больше 2000, на индикатор выводятся символы "----" и фиксация не производится.

«USIL» - установка усиления сигнала фотоприемника. Производится в процессе настройки прибора на пламя контролируемой горелки. После входа в этот режим на индикаторе высвечивается текущее значение уровня сигнала с фотоприемника (код АЦП в диапазоне 0...4090). При каждом нажатии кнопки ▲ (или ▼) мигает светодиод «Факел» и усиление увеличивается (или уменьшается) на 1 шаг. Если удерживать кнопку ▲ (или ▼) в нажатом состоянии, то на индикаторе высвечивается текущий уровень усиления от 0 до 50 (0 соответствует минимальному усилению, 50 — максимальному усилению), а после отпускания кнопки вновь текущее значение уровня сигнала с фотоприемника. По достижению максимального или минимального усиления на индикаторе высвечиваются символы "----".

«USt1» - установка порога погасания факела. По умолчанию 40.

«USt2» - вторая установка порога погасания факела. По умолчанию 40. Если UST2 не равно UST1, то вторая уставка может быть использована как предупреждающий порог.

«drL0» - установка значения задержки срабатывания релейных выходов на погасание факела в секундах. Возможные значения от 0 до 5. По умолчанию установлено значение 0.

<u>Внимание.</u> В соответствии с действующими нормами безопасности для печей и котлов - не более 2 с.

«drL1» - установка значения задержки срабатывания релейных выходов на появление факела в секундах. Возможные значения от 0 до 5. По умолчанию установлено значение 0.

<u>Внимание.</u> В соответствии с действующими нормами безопасности для печей и котлов - не более 1 с.

«SrEL» - Установка положения коммутирующих контактов реле:

- 0 реле RL1 и RL2 нормально-разомкнутые;
- 1 реле RL1 и RL2 нормально-замкнутые;
- 2 реле RL1 нормально-разомкнутое, RL2 нормально-замкнутое;
- 3 реле RL1 нормально- замкнутое, RL2 нормально- разомкнутое;
- 4 положение коммутирующих контактов реле устанавливается пользователем с компьютера.

По умолчанию установлено значение 0.

«GISt» - установка значение гистерезиса срабатывания реле.

Гистерезис определяет значение ниже и выше уставки, при котором будет срабатывать соответствующее реле. Например, если уставка равна 40, а гистерезис равен 2, то соответствующее реле будет размыкаться (замыкаться) по достижению интенсивности горения меньше 38 и будет замыкаться (размыкаться) по достижению интенсивности горения больше 42. «USrd» - установка значения усреднения АЦП. Этот параметр определяет степень сглаживания входного сигнала фотодатчика. Возможные значения от 0 до 6. При Usrd=0 усреднения нет, при Usrd=6 максимальное усреднение. По умолчанию установлено значение 3.

«SPEd» - установка значения быстродействия АЦП. Этот параметр определяет количество выборок АЦП на один замер. Возможные значения от 1 до 8. При SPEd =1 максимальное быстродействие, при SPEd =8 минимальное быстродействие. По умолчанию установлено значение 2.

«OUt» - установка типа токового выхода. Возможные значения 0 и 1. При OUt=0 токовый выход прямой (4..20 mA), при OUt=1 токовый выход обратный (20..4 mA). По умолчанию токовый выход прямой.

«I_4» - (Заводская настройка!) настройка токового выхода на 4 mA. Для входа в этот пункт меню необходимо нажать и удерживать кнопку

в течении примерно 2 секунд, после чего на индикаторе высвечивается значение 12-разрядного кода внутреннего цифро-аналогового преобразователя (ЦАП) фотодатчика. Изменяя его значение и контролируя значение тока по милиамперметру подключенному к токовому выходу прибора, установите выходной ток фотодатчика 4 ± 0.03 mA.

«I_20» - (Заводская настройка!) настройка токового выхода на 20 mA. Для входа в этот пункт меню необходимо нажать и удерживать кнопку

в течении примерно 2 секунд, после чего на индикаторе высвечивается значение 12-разрядного кода внутреннего цифро-аналогового преобразователя (ЦАП). Изменяя его значение и контролируя значение тока по милиамперметру подключенному к токовому выходу прибора, установите выходной ток фотодатчика 20 ± 0.03 mA.

«Adrr» - адрес прибора в сети MODBUS. Возможные значения 0...255. По умолчанию Adrr=1.

«bAUd» - установка скорости приема/передачи UART. Возможные значения 0...6. По умолчанию bAUd =2 (9600 бод).

a –2 (0000 00 4).			
Значение	Скорость		
bAUd	UART (бод)		
0	1200		
1	2400		
2	9600		
3	14400		
4	28800		
5	57600		
6	115200		
4 5	28800 57600		

«HI_t» - установка максимальной температуры внутри корпуса фотодатчика, по достижению которой на индикатор выводится соответствующее сообщение.

«LO_t» - установка минимальной температуры внутри корпуса фотодатчика, ниже которой включается подогрев.

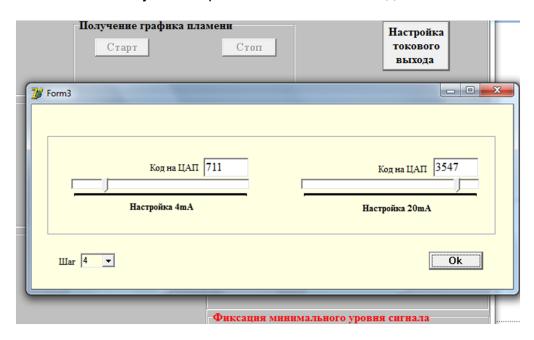
«PS» - установка пароля на вход в меню настроек. Возможные значения 0...99. По умолчанию равен нулю (нет пароля).

«End» - сохранение настроек и выход в рабочий режим.

8.2.2. Программа FDS_Interfase1.

Программа верхнего уровня **FDS_Interfase 1** предназначена для дистанционной работы с фотодатчиками ФДС-03-Exd по интерфейсу RS-485 с использованием протокола MODBUS-RTU.




Рис.9. Главное окно программы в режиме циклического опроса.

Для начала работы с программой нажмите кнопку «Пуск» (см.рис.9). Программа предоставляет следующие возможности:

- Чтение и отображение на экране текущего значения уровня сигнала и интенсивности горения, а также температуры внутри корпуса прибора.
- 2) Чтение и отображение на экране состояния релейных выходов.
- 3) Чтение и изменение в режиме реального времени параметров настройки приборов:
 - уставки;
 - уровень усиления;
 - минимальное значение уровня сигнала (0%);
 - задержки срабатывания релейных выходов;
 - максимальная температура в корпусе прибора (аварийный порог);
 - температура включения подогрева.

4) Настройка токового выхода.

Для перехода в режим настройки тока остановите опрос кнопкой «Стоп» и нажмите кнопку «Настройка токового выхода». Появится окно (см.рис.2).

С помощью ползунковых регуляторов настройте контролируя по подключенному миллиамперметру, настройте значения тока 4 и 20 mA.

5) Получение графика пламени.

По нажатию кнопки «Старт» в режиме опроса прибора начинается формирование графика пламени, а по нажатию кнопки «Стоп» график выводится на экран.

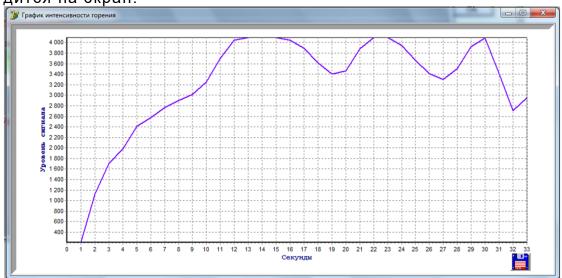


Рис.3. График пламени.

Предоставляется возможность сохранить график в формате bmp.

8.3. Проверка работоспособности

- 8.3.1. Проверку фотодатчика рекомендуется проводить при:
- в период входного контроля;
- в периоды ремонта основного оборудования;
- в обязательном порядке, после ремонта фотодатчика.

Наименование ра- боты	Кто выполняет	Средства изме- рений, техниче- ские устройства и материалы	Контрольные зна- чения параметров
Внешний осмотр и проверка надежности механических и электрических соединений	Обслуживающий персонал	Визуальный осмотр	Отсутствие механических повреждений, ослабления резьбовых соединений, протяжка клемм, состояние кабельных вводов и кабеля
Чистка защитного стекла	Слесарь КИПиА	Ветошь	Грязь не допуска- ется
Проверка на рабо- тоспособность	Слесарь КИПиА или инженер АСУ	Открытое пламя или имитатор факела	Свечение свето- диода при наличии пламени и пере- ключение контак- тов выходного ре- ле

9. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

9.1. Общие указания

- 9.1.1. Монтаж и проверку фотодатчика должны производить лица, имеющие специальную подготовку, допуск к эксплуатации электроустановок напряжением до 1000В и изучившие настоящее руководство по эксплуатации.
- 9.1.2. При эксплуатации техническое обслуживание сводится к регулярному (в зависимости от запыленности помещения) поддержанию чистоты защитного кварцевого окна, и ежедневной проверке фотодатчика на функционирование в составе основного оборудования по состоянию светового индикатора.
- 9.1.3. Работы по монтажу и демонтажу фотодатчика проводить при полностью отключенном напряжении питания. На щите управления укрепить табличку с надписью «Не включать работают люди!».

9.2. Меры безопасности

- 9.2.1. Источниками опасности при монтаже и эксплуатации фотодатчика являются электрический ток.
 - 9.2.2. Безопасность эксплуатации фотодатчика обеспечивается:
 - 1) изоляцией электрических цепей;
 - 2) надежным креплением фотодатчика при монтаже на объекте;
- 3) конструкцией, все токоведущие части расположены внутри корпуса, обеспечивающего защиту обслуживающего персонала от соприкосновения с ними.
- 9.2.3. Необходимо заземлить фотодатчик медным проводом сечением не менее $1,5~\text{mm}^2$.
- 9.2.4. По способу защиты человека от поражения электрическим током фотодатчики относятся к классу I по ГОСТ 12.2.007.0-75.
- 9.2.5. Устранение дефектов фотодатчиков и их замена производится при отключенном электрическом питании.
- 9.2.6. Эксплуатация фотодатчиков разрешается только при наличии инструкции по технике безопасности, утвержденной руководителем предприятия-потребителя.
- 9.2.7. Эксплуатация фотодатчиков должна производиться в соответствии с требованиями межотраслевых руководящих материалов и инструкциями по технике безопасности, действующими на предприятии.

10. ХРАНЕНИЕ

14.1. Фотодатчики могут храниться как в транспортной таре, так и во внутренней упаковке и без нее. Условия хранения без упаковки — 1 по ГОСТ 15150. Условия хранения в транспортной таре и во внутренней упаковке — 2 по ГОСТ 15150.

11. ТРАНСПОРТИРОВАНИЕ

15.1. Фотодатчики в упаковке транспортируются всеми видами крытых транспортных средств в соответствии с правилами и нормами, действующими на каждом виде транспорта.

Допускается транспортировка в отапливаемых отсеках самолетов. Во время погрузочно-разгрузочных работ и транспортирования должна исключаться возможность механического повреждения упаковки и приборов.

15.2. После транспортирования при отрицательных температурах выгруженные ящики с фотодатчиками перед распаковыванием необходимо выдержать в течение 6 часов в условиях хранения.

12. УТИЛИЗАЦИЯ

16.1. Фотодатчик не содержит экологически вредных компонентов и материалов, утилизация производится эксплуатирующей организацией в соответствии с порядком, установленным местными органами управления.

13. ПРОТОКОЛ ОБМЕНА MODBUS RTU

Фотодатчик для связи с верхним уровнем через последовательный порт (СОМ) посредством преобразователя интерфейсов RS232/RS485 (ADAM-4520 или аналогичный) используют протокол связи Modbus в режиме RTU.

Приборы поддерживают следующие функции Modbus RTU:

0x01 Read Coils - (считывание состояния выходных реле);

0x03 Read Multiple Registers - (считывание настроек прибора);

0x04 Read Input Registers - (считывание текущих значений);

0x10 Write Multiple Registers - (изменение настроек прибора).

Формат представления параметров.

Протокол позволяет получать текущее значение интенсивности горения и температуры внутри корпуса прибора, состояния релейных выходов, а также считывать и изменять настройки прибора. Все эти данные, кроме состояния релейных выходов представляются в формате целого числа со знаком (int - 2 байта, старший бит - знаковый).

Адреса параметров.

Coils (релейные выходы)

Адрес	Параметр (формат)	Диапазон
регистра		
0	Реле RL1 - Уставка 1	0-разомкнуто
	(битовое зн-е)	1-замкнуто
1	Реле RL2 - Уставка 2	0-разомкнуто
	(битовое зн-е)	1-замкнуто
2	Реле RL3 - Авария	0-разомкнуто
	(битовое зн-е)	1-замкнуто

Input Registers (текущие значения)

Адрес	Параметр (формат)	Диапазон
регистра		
0	Интенсивность горения (int)	0100
1	Температура внутри корпуса прибора (int)	0100

Holding Registers (настройки прибора)

Адрес	Параметр (формат)	Диапазон
регистра		
0	Уставка 1 (int)	0100
1	Уставка 2 (int)	0100
2	Нулевой уровень прибора (int)	02000
3	Уровень усиления фотоприемника (int)	Min = 0; Max = 50

Описание функций.

0x01 read Coil Функция предназначена для получения состояния выходных реле

Запрос

Описание	Размер	Пример
Адрес прибора	1 байт	0x01
Номер функции	1 байт	0x01
Начальный адрес	2 байта (слово)	0x0000
Количество реле	2 байта (слово)	0x0003
Контрольная сумма	2 байта (слово)	0x3c18

Ответ

Описание	Размер	Пример
Адрес прибора	1 байт	0x01
Номер функции	1 байт	0x01
Количество байт дан-	1 байт	0x01
ных		
Данные	1 байт	0x03
Контрольная сумма	2 байта (слово)	0x9072

Пример запроса получает состояние релейных выходов (в данном случае RL1 и RL2 замкнуты, RL3 разомкнуто).

0x03 read Multiple Registers Функция позволяет получить настройки прибора.

Запрос

Описание	Размер	Пример
Адрес прибора	1 байт	0x01
Номер функции	1 байт	0x03
Начальный адрес	2 байта (слово)	0x0001
Количество регистров	2 байта (слово)	0x0001
Контрольная сумма	2 байта (слово)	0x740A

Ответ

Описание	Размер	Пример	
Адрес прибора	1 байт	0x01	
Номер функции	1 байт	0x03	
Количество байт дан- ных	1 байт	0x02	
Данные	Определяется кол- вом байт данных	0x003C	
Контрольная сумма	2 байта (слово)	0x7984	

Пример запроса получает уставку 2 прибора (в данном случае 60).

0x04 read Input Registers

Функция позволяет получить текущее значение измеряемого параметра Запрос

Описание	Размер	Пример	
Адрес прибора	1 байт	0x01	
Номер функции	1 байт	0x04	
Начальный адрес	2 байта (слово)	0x0000	
Количество регистров	2 байта (слово)	0x0001	
Контрольная сумма	2 байта (слово)	0x31CA	

Ответ

Описание	Размер	Пример		
Адрес прибора	1 байт	0x01		
Номер функции	1 байт	0x04		
Количество байт дан- ных	1 байт	0x02		
Данные	4 байта	0x12		
Контрольная сумма	2 байта (слово)	0xB935		

Пример запроса получает интенсивность горения (в данном случае 18%).

0x10 write Multiple Registers

Функция позволяет изменять настройки прибора. Запрос

Описание	Размер
Адрес прибора	1 байт
Номер функции	1 байт

Описание	Размер	Пример 0x01 0x10		
Адрес прибора	1 байт			
Номер функции	1 байт			
Начальный адрес	2 байта (слово) 0х0001			
Количество реги- стров	2 байта (слово)	0x0001		
Количество байт данных	1 байт	0x02		
Данные	Определяется кол-вом байт данных	0x0050		
Контрольная сум- ма	2 байта (слово)	0xE662		

Ответ

Описание	Размер	Пример		
Адрес прибора	1 байт	0x01		
Номер функции	1 байт	0x10		
Начальный адрес	2 байта (слово)	0x0001		
Количество реги- стров	2 байта (слово)	0x0001		
Контрольная сумма	2 байта (слово)	0xF1C9		

Пример запроса изменяет уставку 2-го прибора (в данном случае на 80).

	Лист регистрации изменений								
	Номера листов (страниц)			Всего ли-	No	Входящий № сопроводи-	Подп		
Изм.	изме- ненных	заменен-	новых	аннули- рован- ных	(страниц) в докум.	докум.	тельного докум. и да- та		Дата